首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   750篇
  免费   155篇
  国内免费   35篇
测绘学   80篇
大气科学   13篇
地球物理   333篇
地质学   200篇
海洋学   7篇
综合类   54篇
自然地理   253篇
  2024年   1篇
  2023年   6篇
  2022年   17篇
  2021年   37篇
  2020年   40篇
  2019年   41篇
  2018年   35篇
  2017年   42篇
  2016年   35篇
  2015年   38篇
  2014年   54篇
  2013年   85篇
  2012年   42篇
  2011年   42篇
  2010年   30篇
  2009年   38篇
  2008年   42篇
  2007年   57篇
  2006年   47篇
  2005年   48篇
  2004年   32篇
  2003年   35篇
  2002年   24篇
  2001年   20篇
  2000年   9篇
  1999年   8篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1994年   5篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1983年   1篇
  1972年   1篇
排序方式: 共有940条查询结果,搜索用时 31 毫秒
41.
由于人为因素和自然因素的共同作用,全球生态系统正经历着巨大的变化。而这些驱动因素中,只有人为因素可进行调控。本文以人类对生态系统服务的消耗为着眼点,分析人类在获取舒适生活的过程中与生态系统形成的相互作用。研究从回顾生态系统服务消耗研究入手,建立了将生态系统服务、生态系统服务消耗和生态系统管理三者相联系的概念框架,并构建了生态系统服务消耗研究模型。同时,进一步以中国泾河流域为案例,对模型在生态系统服务直接消耗模式研究中的应用进行了实证研究和探讨。  相似文献   
42.
运用SWAT模型对水土保持、减少化肥农药施用量、减少表层土壤施肥量比例、退耕还林及综合措施对于不同非点源污染在灞河流域的消减效果进行了模拟。结果表明:(1)水保措施对N、P、DDT的削减效果最高可达44.4%,相对而言对于溶解磷的削减效果不是很明显。(2)减少施肥量措施对溶解P、总P、NO3-N的削减率相对较高,而对于其它指标的削减效果不是很明显;减少农药施用量措施对DDT的削减效果较好,削减率可达50.92%。(3)减少表层土壤施肥量占总施肥量的比例措施对溶解P、总P的削减效果较为明显,而对于其它指标的削减效果不是很明显。(4)退耕还林措施对于各项指标都有着明显的削减作用。(5)综合措施对于各项指标均有着很好的削减作用,总体看来综合措施可大大减少流域内的非点源污染负荷,对于改善流域水环境质量可起到巨大的作用。研究为灞河流域非点源污染最佳管理措施的实施提供了明确实际的决策支持。  相似文献   
43.
44.
Global climate change will likely increase temperature and variation in precipitation in the Himalayas, modifying both supply of and demand for water. This study assesses combined impacts of land‐cover and climate changes on hydrological processes and a rainfall‐to‐streamflow buffer indicator of watershed function using the Soil Water Assessment Tool (SWAT) in Kejie watershed in the eastern Himalayas. The Hadley Centre Coupled Model Version 3 (HadCM3) was used for two Intergovernmental Panel on Climate Change (IPCC) emission scenarios (A2 and B2), for 2010–2099. Four land‐cover change scenarios increase forest, grassland, crops, or urban land use, respectively, reducing degraded land. The SWAT model predicted that downstream water resources will decrease in the short term but increase in the long term. Afforestation and expansion in cropland will probably increase actual evapotranspiration (ET) and reduce annual streamflow but will also, through increased infiltration, reduce the overland flow component of streamflow and increase groundwater release. An expansion in grassland will decrease actual ET, increase annual streamflow and groundwater release, while decreasing overland flow. Urbanization will result in increases in streamflow and overland flow and reductions in groundwater release and actual ET. Land‐cover change dominated over effects on streamflow of climate change in the short and middle terms. The predicted changes in buffer indicator for land‐use plus climate‐change scenarios reach up to 50% of the current (and future) range of inter‐annual variability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
45.
Abstract

Abstract The MASONW (MACRO + SOILN + Watershed) model describing nitrogen leaching in watersheds was developed and tested. The model is based on the MACRO and SOILN models. The dual-porosity model MACRO simulates water flow on the field scale. The SOILN model describes turnover and leaching of nitrogen. Two main features of a watershed have been added into these two models: (a) the existence of a river system, and (b) variable thickness of the aeration zone within a watershed. Good agreement between the output of the MASONW model and observed data for water discharge and nitrate concentrations were achieved in the Odense watershed (496 km2) in Denmark.  相似文献   
46.
Excessive terrestrial nutrient loadings adversely impact coral reefs by primarily enhancing growth of macroalgae, potentially leading to a phase‐shift phenomenon. Hydrological processes and other spatial and temporal factors affecting nutrient discharge must be examined to be able to formulate effective measures for reducing nutrient export to adjacent reefs. During storm events and baseflow periods, water samples were obtained from the tropical Todoroki River, which drains an intensively agricultural watershed into Shiraho coral reef. In situ nutrient analyzers were deployed for 6 months to hourly measure dissolved nutrient (NO3‐N and PO43−‐P) concentrations. Total phosphorus (TP) and suspended solid concentration (TSS) were increased by higher rainfall intensity (r = 0·94, p < 0·01) and river discharge Q (r = 0·88, p < 0·01). In contrast, NO3‐N concentration tends to decrease drastically (e.g. from 3 to 1 mg l−1) during flood events. When base flow starts to dominate afterwards, NO3‐N manifested an increasing trend, but decreases when baseflow discharge becomes low. This counter‐clockwise hysteresis for NO3‐N highlights the significant influence of groundwater discharge. N delivery can therefore be considered a persistent process compared to sediment and P discharge, which are highly episodic in nature. Based on GIS analysis, nutrient concentration along the Todoroki River was largely affected by the percentage of sugarcane/bare areas and bedrock type. The spatial distribution of N concentration in the river reflects the considerable influence of subsurface geology—higher N levels in limestone‐dominated areas. P concentrations were directly related to the total length of artificial drainage, which enhances sediment transport. The use of high‐resolution monitoring data coupled with GIS‐based spatial analysis therefore enabled the clarification of control factors and the difference in the spatio‐temporal discharge characteristics between N and P. Thus, although erosion‐reduction schemes would reduce P discharge, other approaches (e.g. minimize fertilizer) are needed to reduce N discharge. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
47.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
48.
Impact studies of catchment management in the developing world rarely include detailed hydrological components. Here, changes in the hydrological response of a 200‐ha catchment in north Ethiopia are investigated. The management included various soil and water conservation measures such as the construction of dry masonry stone bunds and check dams, the abandonment of post‐harvest grazing, and the establishment of woody vegetation. Measurements at the catchment outlet indicated a runoff depth of 5 mm or a runoff coefficient (RC) of 1·6% in the rainy season of 2006. Combined with runoff measurements at plot scale, this allowed calculating the runoff curve number (CN) for various land uses and land management techniques. The pre‐implementation runoff depth was then predicted using the CN values and a ponding adjustment factor, representing the abstraction of runoff induced by the 242 check dams in gullies. Using the 2006 rainfall depths, the runoff depth for the 2000 land management situation was predicted to be 26·5 mm (RC = 8%), in line with current RCs of nearby catchments. Monitoring of the ground water level indicated a rise after catchment management. The yearly rise in water table after the onset of the rains (ΔT) relative to the water surplus (WS) over the same period increased between 2002–2003 (ΔT/WS = 3·4) and 2006 (ΔT/WS >11·1). Emerging wells and irrigation are other indicators for improved water supply in the managed catchment. Cropped fields in the gullies indicate that farmers are less frightened for the destructive effects of flash floods. Due to increased soil water content, the crop growing period is prolonged. It can be concluded that this catchment management has resulted in a higher infiltration rate and a reduction of direct runoff volume by 81% which has had a positive influence on the catchment water balance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
49.
The scale issue is of central concern in hydrological processes to understand the potential upscaling or downscaling methodologies, and to develop models for scaling the dominant processes at different scales and in different environments. In this study, a typical permafrost watershed in the Qinghai‐Tibet Plateau was selected. Its hydrological processes were monitored for 4 years from 2004 to 2008, measuring the effects of freezing and thawing depth of active soil layers on runoff processes. To identify the nature and cause of variation in the runoff response in different size catchments, catchments ranging from 1·07 to 112 km2 were identified in the watershed. The results indicated that the variation of runoff coefficients showed a ‘V’ shape with increasing catchment size during the spring and autumn seasons, when the active soil was subjected to thawing or freezing processes. A two‐stage method was proposed to create runoff scaling models to indicate the effects of scale on runoff processes. In summer, the scaling transition model followed an exponential function for mean daily discharge, whereas the scaling model for flood flow exhibited a linear function. In autumn, the runoff process transition across multiple scales followed an exponential function with air temperature as the driving factor. These scaling models demonstrate relatively high simulation efficiency and precision, and provide a practical way for upscaling or downscaling runoff processes in a medium‐size permafrost watershed. For permafrost catchments of this scale, the results show that the synergistic effect of scale and vegetation cover is an important driving factor in the runoff response. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
50.
Basin landscapes possess an identifiable spatial structure, fashioned by climate, geology and land use, that affects their hydrologic response. This structure defines a basin's hydrogeological signature and corresponding patterns of runoff and stream chemistry. Interpreting this signature expresses a fundamental understanding of basin hydrology in terms of the dominant hydrologic components: surface, interflow and groundwater runoff. Using spatial analysis techniques, spatially distributed watershed characteristics and measurements of rainfall and runoff, we present an approach for modelling basin hydrology that integrates hydrogeological interpretation and hydrologic response unit concepts, applicable to both new and existing rainfall‐runoff models. The benefits of our modelling approach are a clearly defined distribution of dominant runoff form and behaviour, which is useful for interpreting functions of runoff in the recruitment and transport of sediment and other contaminants, and limited over‐parameterization. Our methods are illustrated in a case study focused on four watersheds (24 to 50 km2) draining the southern coast of California for the period October 1988 though to September 2002. Based on our hydrogeological interpretation, we present a new rainfall‐runoff model developed to simulate both surface and subsurface runoff, where surface runoff is from either urban or rural surfaces and subsurface runoff is either interflow from steep shallow soils or groundwater from bedrock and coarse‐textured fan deposits. Our assertions and model results are supported using streamflow data from seven US Geological Survey stream gauges and measured stream silica concentrations from two Santa Barbara Channel–Long Term Ecological Research Project sampling sites. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号